
Client Server Development

Aarthi

Laks

Developers Workshop
30 May 1995

727-PP-001-001 AL-1

Developing the Distributed
Application

1

2

3

4

Understand the Problem
➢ what needs to be distributed /resources
➢ think about layers & idempotent operations
➢ thread safety ex: X11/xt/Motif
➢ what are the security requirements
➢ understand the acknowledgments

Define the Interface - IDL
➢ every Interface needs unique transaction
➢ parameters and results types
➢ Use ACFs

Write the Server
➢ Initialization & Registration
➢ Manager routines
➢ MSS interfaces

Write the Client
➢ understand the use of threads
➢ Select the Binding method
➢ Invoke the rpc/member function

727-PP-001-001
AL-2

ECS Server
Basic Components

Initialization

DCE Runtime
Library

ECS Encapsulation

Manager

OODCE

S
S

Server Stub

M

A Server is a ECS Managed Entity

727-PP-001-001
AL-3

What do ECS Server do

1

2

3

4

7

5

6

Perform initialization and registration functions

Block Waiting for incoming RPC request from a client

When a request arrives execute appropriate manager routine

Wait for more rpcs or management interface calls

Issue management/event notification

Do replicate update [optional]

Exit gracefully, if necessary

727-PP-001-001
AL-4

Generic ECS Server

theServer->SetAuthInfo(...)

myLogger->Log(...)

All Server constructors/member
functions and other code should
be surrounded by try/catch clauses

theServer->RegisterObject(myServer)

Setting Authentication Preferences
authentication model, key retrieval
mechanism
[Creating new ACL database]

unregistered from all registered places
close all open files
free all the handles/memory

RPC
Adapter

Database
Adapter

HTML
Adapter

Exception
Handling

Security
Validation

Cleanup/
Shutdown

Manager Routines

Threads/Q/
Session
Mgmt

Security
Initialization

Registration

State Control/
Monitoring

Event
Logging

Instrumentation
Agent Interface

other
Adapters

Local Registration File/
Server Configuration File

Register the interfaces with
the rpc runtime library

select protocol sequences for
rpc listening upd/tcp/??

export server info to naming/CDS
manage/export to Mgmt framework

eso->listen()

selecting the manager object/multiple implementation
Making embedded SQL calls to DB
Making calls to HTML servers
nested rpcs

ECS MIB
 Version #
 Last boot time
 rpc's processes
 rpc's in Q
 Server Status

refresh server credentials

validate client requests
for resources - ACLs

Start/Stop/Suspend/Resume

 Monitor Status

Every event has a unique ID, textual msg
Filtering Event Logging (Filter Guides)
Logging events based on
type[condition]- success, failure, denial
action - log locally, log at SMC, console
 email, etc..
class - Subsystem Level

maintaining client info of active sessions
Q mgmt for requests- incoming/outgoing
threads for multi-tasking
Buffering calls

IsAuth(...)

ServerCleanup

DCEDCE
OODCE

DCE

DCE

ManagerInitialization

Server
Stub

ECS
Encapsulation

ECS Generic Server

AL-5
727-PP-001-001

OODCE

string_conv.idl

idl++

I

Stub Header
string_conv.h

Client Stubs
string_conv_cstub.c

Server Stubs
string_conv_sstub.c

Client Side Class
Declarations
string_convC.H

Client Side Class
Implementation
string_convC.C

Server EPV
string_convE.C

client.C server.C string_conv.C

Compile and link libraries (libdce.a and liboodce.a) Compile and link libraries (libdce.a and liboodce.a)

C1

C3

C2

S1

S3

S2

M1SC

G

727-PP-001-001 Client Executable Server Executable

AL-6

Server Include Files

Pthread.H

EcsServer.H

Exception.H

Interface Header file

Roughwave header files

ECS types file

Other application specific include files

727-PP-001-001
AL-7

OODCE Server Development

Server Stubs
string_conv_sstub.c

Server Side Class
Declarations string_convS.H

Server EPV
string_convE.C

DCEObj DCEInterfaceMgr

string_conv_1_0_ABS

string_conv_1_0_Mgr
(default class; nil class)

server.C
#include <oodce/Server.H>
#include “string_convS.H”

// Create an instance of string_conv_
// 1_0_Mgr
string_conv_1_0_Mgr inst1;

// Register the instance with the
// server object
theServer->RegisterObject(inst1);

// Select protocol sequence
theServer->UseAllProtocols();

// Set server object registration
// characteristics for registration
// in the CDS
theServer->SetName(...);
theServer->SetDescription(...);
theServer->SetProfileName(...);
theServer->SetGroupName(...);

// Listen
theServer->Listen();

string_conv.C

#include “string_convS.H”

// Implementation
// of the functions in
// string_conv.idl (member
// functions of string_
// conv_1_0_Mgr)

string_conv_1_0_Mgr::
any(...)

Stub Header
string_conv.h

#include “string_conv.h”

(Developer implements
member functions for this
class -- string_conv.C)

Compile and link libraries (libdce.a and liboodce.a)

727-PP-001-001 Server Executable AL-8

Client Server in OODCE

727-PP-001-001

Manager Object (implements the
remote oprns defined in the IDL)

(obj)

GSO
(theServer)

(contained in
OODCE library)

Server Program

Endpoint Map
(RPCD)

Listen:
-- Register internal info
(interfaces, objects, security
preferences, policies, protocol
sequences, object activation
info, CDS usage, host policy)
with RPC Runtime, Endpoint
Map, CDS.
-- Wait for client requests.

Register Object (Place info
about the object in the private
state of the GSO).

S1

CDS

C++ Implementation
of manager class.

Create instance of this class (UUID can
be automatically created by constructor
or passed to the constructor).

Select communication
protocols (default all
protocol seqs).

Set naming, security
preferences.

RPC Runtime

SERVER SYSTEM

S2

S3

S4

S5

S6S7

S8

Client Object

Client Program

Client object generated
by IDL++ compiler.

Create an instance of client
object. Pass location info
or by server/group/profile
CDS entry.

CLIENT SYSTEM

Get bindings
registered under
server/group/
profile entry
name in CDS.

After obtaining binding info, the
RPC runtime library contacts the
RPCD on the host on which the
server program is running; Obtain
server process endpoint.

RPC Runtime

C1

C2

C3

C4

C6

Bind to Server; Complete the RPC.C7

Invoke member function
on client object (RPC).

C5

AL-9

string_conv.idl

[uuid(59EDFC40-55F3-11CC-8C79-080009253B97),
pointer_default(ref), /* for efficiency reasons */
version(1.0)]
interface string_conv
{

/* Define the data type to be used to hold the string data. */

typedef [string] char string_ref_t[80];

/*
* Define the procedure to convert a string to uppercase. The string_convert_uppercase procedure takes a handle.
* The other argument is a string data type used both for input and output. This emulates a C "call by reference" upon
* return from the procedure call the pointer now points to different data, but the pointer address is still the same.
*
* The string_convert_uppercase function is declared to be idempotent for efficiency reasons. The idempotent attribute
* tells the IDL compiler that if the function is called multiple times with the same arguments it will have the same effect.
* This means a call to an idempotent function can be resent without adverse side effects; this allows the RPC protocol
* to be more efficient, at least when using a datagram transport.
*/

[idempotent] void string_convert_uppercase
(

[in] handle_t h, /* Use explicit binding */
[in,out] string_ref_t conv_string /* The string to convert */

);
}

727-PP-001-001
AL-10

Steps in developing a server
main function

1. Construct manager objects that are accessed via the server.
2. Create and activate a signal handling thread to perform server cleanup.

3. Register objects created in step 1 with the Global Server Object (GSO).
The GSO needs to know about all the objects it is managing.
Registration places information about the object in the private state

of the GSO.
4. Select communication protocols (optional).
5. Set naming preferences for the GSO (optional). Binding information can

be placed in the CDS by giving GSO a name.
6. Set security preferences for the GSO (optional).
7. Instruct the GSO to listen for client requests. Places information with

the Endpoint Map (RPCD) and CDS.

727-PP-001-001
AL-11

server.C

#include <oodce/Pthread.H>

#include <oodce/Server.H>

#include <oodce/Exceptions.H>

#include <oodce/ObjectReference.H>

#include "string_convS.H"

#include <stream.h>

void main()

{

// DCEPthread Classes

// DCEServer object definitions

// C++ Exceptions for library

// Network location information for a manager object

// DCEInterface definition

// C++ Streams

try { // Setup try block for exception handling
// Create and activate a signal handling thread to perform server cleanup

DCEPthread* exitThd = new DCEPthread(DCEServer::ServerCleanup, (void *)(0));

// Create string_conv object with a given UUID

DCEUuid objUuid = (const char *)"f47ee25c-480d-11ce-bb96-080009701906";

string_conv_1_0_Mgr* string_conv = new string_conv_1_0_Mgr((uuid_t *)objUuid);

// Register string_conv object with the server object

theServer->RegisterObject(*string_conv);

theServer->Register();

// Use all available protocol sequence for receiving client requests.

theServer->UseAllProtocols();

// Set server object registration characteristics for registration in the CDS

theServer->SetGroupName((const unsigned char *)"/.:/subsys/HP/sample-apps/stringConvGroup");

theServer->SetProfileName((const unsigned char *)"/.:/subsys/HP/sample-apps/stringConvProfile");

theServer->SetName((const unsigned char *)"/.:/subsys/HP/sample-apps/stringConvServer");

727-PP-001-001
theServer->SetDescription((char *)"String Convert");

AL-12

server.C (contd)

// For printing purposes

DCEBinding bindingHandle((rpc_binding_handle_t)string_conv->GetObjectReference());

printf("String Binding: %s\n", (unsigned char *)bindingHandle);

// Activate the server
theServer->Listen();

}

// Catch any DCE related errors and print out a informative string if any occur
catch (DCEErr& exc) {

cout << "Caught DCE DCEException\n" << (const char*)exc;
throw;

}

// Destructors are called to do appropriate cleanup with DCE runtime and rpcd
}

727-PP-001-001
AL-13

string_conv.C

#include <stdlib.h> // Standard POSIX defines

#include <stdio.h> // Standard IO library

#include <ctype.h> // For toupper()

#include "string_convS.H" // From string_conv.idl

void string_conv_1_0_Mgr::string_convert_uppercase(string_ref_t conv_string)
{

int i;

printf("string_convert_uppercase method entered\n");

for (i=0; (conv_string[i] != '\0') && (i < 80); i++)

{

conv_string[i] = toupper(conv_string[i]);

}

printf("string_convert_uppercase method exit\n");

return;

}

727-PP-001-001
AL-14

Basic ECS Client Components

MSS

Server
Binding

[optional]

DCE Runtime
Library

ECS Encapsulation

RPC
Invocations

OODCE
Client Stub

727-PP-001-001
AL-15

OODCE Client Development

Client Stubs Stub Header
string_conv_cstub.c string_conv.h

Client Side
Class Implementation

string_convC.C

(default implementation
of string_conv_1_0)

Client Side Class Declarations
string_convC.H

string_conv_1_0
(default class)

DCEInterface

client.c

#include “string_convC.H”
.
.

// Create an instance of client object
// passing location information and
// UUID of the manager object. The
// client object searched for bindings
// of a compatible manager. RPCs
// then can be sent to the located
// manager object by using these fully
// bound handles.
string_conv_1_0 inst1(...);

// Invoke member function (RPC) on
// inst1
inst1.any(...);

#include “string_conv.h”

Compile and link libraries (libdce.a and liboodce.a)

Client Executable
727-PP-001-001

AL-16

Steps in developing client main
function

1. Create client object. The client object locates the manager object based
on the following information:

•	 Interface (default). Any object that implements the requested interface is
used.

• Host Address and Protocol Sequence

• CDS
- Server Entry
- Group Entry

- Profile Entry
• Object Reference

2. Invoke member function on client object (RPC).

727-PP-001-001
AL-17

Client Server in OODCE

Manager Object (implements the
remote oprns defined in the IDL)

(obj)

GSO
(theServer)

(contained in
OODCE library)

Server Program

Endpoint Map
(RPCD)

 Listen:
-- Register internal info
(interfaces, objects, security
preferences, policies, protocol
sequences, object activation
info, CDS usage, host policy)
with RPC Runtime, Endpoint
Map, CDS.
-- Wait for client requests.

Register Object (Place info
about the object in the private
state of the GSO).

S1

CDS

C++ Implementation
of manager class.

Create instance of this class (UUID can
be automatically created by constructor
or passed to the constructor).

Select communication
protocols (default all
protocol seqs).

Set naming, security
preferences.

RPC Runtime

SERVER SYSTEM

S2

S3

S4

S5

S6 S7

S8

Client Object

Client Program

Client object generated
by IDL++ compiler.

Create an instance of client
object. Pass location info
or by server/group/profile
CDS entry.

CLIENT SYSTEM

Get bindings
registered under
server/group/
profile entry
name in CDS.

After obtaining binding info, the
RPC runtime library contacts the
RPCD on the host on which the
server program is running; Obtain
server process endpoint.

RPC Runtime

C1

C2

C3

C4

C6

Bind to Server; Complete the RPC.C7

Invoke member function
on client object (RPC).

C5

727-PP-001-001
AL-18

Binding Methods

Automatic
• Client Stub manages the binding handle

Implicit
•	 Client application obtains the binding handle but is held in the stub as

a global variable

Explicit
•	 Client application obtains it and is passed as the first argument of

every rpc call [OODCE does this internally - developer need not worry]
•	 only method if the server supports more than one implementation of

the same remote procedure calls using Object UUIDs

Explicit Binding is ECS Standard

727-PP-001-001
AL-19

client.C

#include <oodce/ObjectReference.H>

#include <oodce/Exceptions.H>

#include "string_convC.H"

#include <stream.h>

main()

{

// Network location information for a manager object

// Class library exceptions

// Client object definition

// C++ Streams

try { // Set up a try block to catch exceptions
unsigned char string_to_convert[80];
strcpy((char *)string_to_convert, "asdf");

cout << “Using Interface (the environment varaiable RPC_DEFAULT_ENTRY is set to /.:/subsys/

HP/sample-apps/stringConvServer)” << endl;

string_conv_1_0 convert0;

convert0.string_convert_uppercase(string_to_convert);

cout << "Using Host Address and Protocol Sequence" << endl;

string_conv_1_0 convert1((unsigned char *)"baltic.hitc.com", (unsigned char *)"ncadg_ip_udp");

convert1.string_convert_uppercase(string_to_convert);

cout << "Using CDS Server Entry Name" << endl;

string_conv_1_0 convert2((unsigned char *)"/.:/subsys/HP/sample-apps/stringConvServer");

convert2.string_convert_uppercase(string_to_convert);

cout << "Using CDS Group Entry Name" << endl;
string_conv_1_0 convert3((unsigned char *)"/.:/subsys/HP/sample-apps/stringConvGroup");

727-PP-001-001
convert3.string_convert_uppercase(string_to_convert);

AL-20

client.C (contd)

cout << "Using CDS Profile Entry Name" << endl;
string_conv_1_0 convert4((unsigned char *)"/.:/subsys/HP/sample-apps/stringConvProfile");
convert4.string_convert_uppercase(string_to_convert);

cout << "Using Object Reference" << endl;
DCEBinding bindingHandle((const unsigned char *)

"f47ee25c-480d-11ce-bb96-080009701906@ncadg_ip_udp:155.157.31.90[]");

DCEObjectReference objRef(bindingHandle);
objRef.PrintReference();
string_conv_1_0 convert5((DCEObjRefT *)objRef);
convert5.string_convert_uppercase(string_to_convert);

}

// Catch any DCE related errors and print out a informative string if any occur
catch (DCEErr& exc) {

printf("DCE DCEException: %s\n", (const char *)exc);
}

}

727-PP-001-001
AL-21

Glossary

Binding Information Includes one or more sets of protocol sequences and host address combinations. Well-known endpoints can be part of the
binding information but dynamic endpoints cannot. This is the information a client needs in order to find a server.

Cell Directory Service The Cell Directory Service (CDS) is a name service supplied with DCE which is used by applications to store and retrieve

binding information.
Endpoint An endpoint is a number representing a specific server process running on a system.
Endpoint Map Server process places process information in a special database on the server system called the local endpoint map.
Entry Point Vector An Entry Point Vector (EPV) contains entry points for each RPC defined in an interface. In DCE, these are pointers to

remote procedures and in OODCE these are pointers to member functions of C++ objects . The EPV code ensures that the
correct C++ manager object on the server is called for each client request.

Global Server Object A Global Server Object (GSO) called theServer is used to register objects with the DCE environment and then to listen for
client requests. OODCE library contains the GSO.

Group Entry A group entry is a name service entry that corresponds to a set of servers, usually offerring the same interface.
The name service routines search the members of a group to find a server.

Interfaces Operations that can be performed on a DCE object are grouped into logical sets called interfaces. DCE Interfaces defines
the calling syntax that is used by both the requestor (DCE client) and the provider (DCE object) of an operation.

Interface Definition Language Specification of interfaces use an Interface Definition Language (IDL) to define the operation signatures.
Interface Identifier During the search for binding information, RPC name service routines use this identifier to determine if a compatible

interface is found.
Interface Versions Interface versions are identified by a major and minor number. An increase in the minor number signifies a compatible

upgrade to the interface. Interfaces with different major numbers are not compatible.
Marshalling Marshalling is the process during a RPC which prepares data for transmission across the network. Marshalling converts data

into a byte-representation format and packages it for transmission using a network data representation (NDR). NDR handles
differences like big-endian versus little-endian (byte order), ASCII chatacters versus EBCDIC characters, and other
incompatibilities.

Object An OODCE object is an entity that is manipulated by a set of well defined operations. A server can manage thousands of
objects. These objects are accessed via a server process that is said to export interface information on behalf of the object it
supports.

Object UUID Each OODCE Object is assigned a UUID so that it can be located and used by remote clients.

727-PP-001-001
AL-22

Glossary (contd)

Profile Entry A profile entry is a name service entry that defines a search list for finding servers in the CDS. Profiles gather all services
together. Profiles let you tailor the CDS search so that all your clients begins a search from a single general entry name.

RPC Daemon The RPC daemon (RPCD) is a process that provides the endpoint map service. This service maintains the local endpoint
map for local RPC servers and lookup endpoints for RPC clients.

RPC Runtime library The RPC Runtime library is a set of standard runtime routines that support all DCE RPC applications. The client stub
communicates with the server stub using the RPC runtime library.

Server Entry Server entry stores binding information for an RPC server. It contains interface identifier, binding information and an
optional object UUID.

Stub Stub is a surrogate code that supports remote procedure calls.
Unmarshalling Data transmitted across the network undergoes a process called unmarshalling. If the data format of sender and receiver is

different, the receiver’s stub converts the data to the right format for that system, and passes the data to the application.

727-PP-001-001
AL-23

